Model Predictive Control (MPC) can effectively handle control problem with disturbances, multicontrol variables, and complex constraints and is widely used in various control systems. In MPC, the control input at each time step is obtained by solving an online optimization problem, which will cause a time delay in real time on embedded computers with limited computational resources. In this paper, we utilize adaptive Alternating Direction Method of Multipliers (a-ADMM) to accelerate the solution of MPC. This method adaptively adjusts penalty parameter to balance the value of primal residual and dual residual. The performance of this approach is profiled via the control of a quadcopter with 12 states and 4 controls and prediction horizon ranging from 10 to 40. The simulation results demonstrate that the MPC based on a-ADMM has a significant improvement in real-time and convergence performance and thus is more suitable for solving large-scale optimal control problems.