2019
DOI: 10.9734/jamcs/2019/v30i630092
|View full text |Cite
|
Sign up to set email alerts
|

Global Existence and Blow-up of Classical Solution for an Attraction-repulsion Chemotaxis System with Logistic Source

Abstract: We consider the following quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic-elliptic type with logistic source under homegeneous Neumann boundary conditions in a bounded domain `\Omega\subset R^{n}(n\geq2)` with smooth boundary, where`D(u)\geq c_{D}(u+1)^{m-1}` with `m\geq1`and `c_{D}>0`, `f(u)\leq a-bu^{\eta}` with `\eta>1`.{ We show two cases that the system admits a uniqueglobal bounded classical solution depending on `0\leq S(u)\leq C_{s}(u+1)^{q}, 0\leq F(u)\leq C_{F}(u+1)^{g}… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?