Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A reaction‐diffusion two‐predator‐one‐prey system with prey‐taxis describes the spatial interaction and random movement of predator and prey species, as well as the spatial movement of predators pursuing preys. The global existence and boundedness of solutions of the system in bounded domains of arbitrary spatial dimension and any small prey‐taxis sensitivity coefficient are investigated by the semigroup theory. The spatial pattern formation induced by the prey‐taxis is characterized by the Turing type linear instability of homogeneous state; it is shown that prey‐taxis can both compress and prompt the spatial patterns produced through diffusion‐induced instability in two‐predator‐one‐prey systems.
The global existence and boundedness of a reaction-diffusion-taxis system with three interacting species, among which two species consist of predators competing for one species of prey, are investigated. MSC: 35K57; 35K59; 35B45; 92D25
We study a forager–exploiter model with nonlinear diffusions: where is a smooth bounded domain, is a nonnegative bounded function, satisfying with some sufficiently large . Global‐in‐time solutions are established for corresponding Neumann initial‐boundary value problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.