Simulações usando a dinâmica molecular foram efetuadas, considerando-se um potencial empírico para investigar geometrias, padrões de crescimentos, estabilidades de estruturas e energias para clusters de Cu n (n = 2-45). Os clusters estáveis otimizados foram calculados pelo rearranjo via processo de colisão. O presente procedimento apresenta-se como uma alternativa eficiente para a identificação do crescimento de clusters e como uma técnica de otimização. Foi verificado que os clusters de cobre preferem formar estruturas compactas tridimensionais em determinadas configurações enquanto os sistemas de tamanho médio apresentam simetria esférica. Além disso, também foram observadas correlações entre os arranjos atômicos e os números mágicos dos clusters. Particularmente, verificou-se que Cu 26 tem uma estabilidade equivalente ao sistema Cu 13 . Molecular dynamics simulations, via an empirical potential, have been performed in order to investigate geometries, growing patterns, structural stabilities, energetics, and magic sizes of copper clusters, Cu n (n = 2-45). Possible optimal stable structures of the clusters have been generated through following rearrangement collision of the system in fusion regime. This process serves as an efficient alternative to the growing path identification and the optimization techniques. It has been found that copper clusters prefer to form three-dimensional compact structures in the determined configurations and the appearances of medium sizes are five fold symmetry on the spherical clusters. Moreover, relevant relations between atomic arrangements in the clusters and the magic sizes have been observed. Cu 26 may be accepted as another putative magic size like Cu 13 .Keywords: copper, cluster, potential energy function, molecular dynamics
IntroductionClusters are quite different from solid-state materials. They are aggregates of nanoscale size, with an intermediate state of matter between molecules and bulk. They also exhibit a range of unusual physical and chemical properties, such as structural, electronic, and thermodynamic. Metallic clusters have been the subjects of intense research. Due to their broad applications toward biology, catalysis, and nanotechnology, research on clusters has shown considerable development in both experimental and theoretical investigations. [1][2][3][4][5][6] Understanding the intricate connection between the atomic and electronic structures can represent an important preliminary step toward the possible use of metal nanoclusters in future nanotechnological applications. [1][2][3][4][5][6] In this respect, the changes of cluster properties as a function of size, such as evolution from small to large clusters, is one of the most interesting issues. 6 Systematic structural studies represent the starting point for understanding other general cluster properties. Hence, enormous efforts are devoted to determine the lowest energy structures of transition metal (TM) clusters.
5-10Unfortunately, determination of equilibrium structures, and of atomic arrangemen...