The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells 1-5 , but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.In the North Atlantic, the most recent glacial and deglacial periods are characterized by a series of abrupt and severe cold snaps of millennial duration associated with either iceberg instabilities and surges (Heinrich events) or freshwater input from the Arctic Ocean 6 (the Younger Dryas). These abrupt events are of particular interest because they were rapidly communicated through the ocean by a slowdown, or potentially a shutdown, of the Atlantic meridional overturning circulation 7 (AMOC) and through the atmospheric circulation 8 causing climate anomalies worldwide. Climate archives document a significant tropical hydrologic response to these events. Dry Younger Dryas and Heinrich stadials have been reported from various marine and terrestrial archives across the tropical Indian Ocean 4,9-14 .However, a few records suggest wet Younger Dryas or Heinrich stadials over northeast Australia 15 , southern Indonesia 5,16 and southeast Africa 12,17 . Although there seems to be strong evidence that the intertropical convergence zone (ITCZ) moved southwards in the tropical Atlantic 2 , a wide range of mechanisms have been offered to explain the connection between the cooling of the North Atlantic and tropical Indian Ocean hydroclimates: a weakening of the rainfall system in response to regional sea surface cooling 13,14 ; and changes in the monsoon intensity 4,10,16 associated with a southward shift in the mean 1 or winter 4,5,15 position of the ITCZ or in the position of oceanic fronts 18 .How...