Boron (B) is an essential micronutrient of plants. Plants grapple with a narrow range of B between its toxicity and deficiency. B homeostasis mechanism is required to rescue plants from such a quagmire. B transporters are specialized proteins involved in the homeostasis of B. In the present study, a total of 29 BOR genes were identified in five major cereals, including three BORs in each Brachypodium distachyon and Sorghum bicolor, four in Oryza sativa, six in Zea mays, and 13 in Triticum aestivum. Multiple sequence alignments, domain structure analyses, and phylogenetic analysis indicated the conserved nature of the BOR protein family. Duplication events and Ka/Ks analysis of TaBORs showed the role of segmental duplication events and purifying selection in the expansion of the BOR family in T. aestivum. Furthermore, in silico expression and co-expression analyses under biotic and abiotic stress conditions depicted their involvement in combating such conditions. Moreover, qRT-PCR of TaBORs in B treatment suggested the roles of BOR genes in B stress management. The present study hints at the conserved nature of BOR proteins and their different aspects. The study will lay down a way for several crop improvement programs.