In mammals, skeletal muscle development is a complex biological process regulated by many factors. N6-methyladenosine (m6A) RNA modification plays an important role in many biological processes. However, the regulation of m6A on skeletal muscle growth and development in adult goats remains unclear. In this study, Duan goats (DA) and Nubia goats (NBY), both female and 12 months old, were selected as the research objects, and m6A-Seq and RNA-Seq were mainly used to detect the difference of m6A modification and gene expression during the development of the longissimus dorsi (LD) muscle in the two breeds. The results showed that compared with DA, the meat production performance of NBY was better than that of DA, and the modification level of m6A was higher than that of DA in LD. The m6A-Seq of LD indicated m6A peaks were mainly enriched in the coding sequence (CDS) and stop codon. A total of 161 differentially methylated genes (DMGs) and 1294 differentially expressed genes (DEGs) were identified in two breeds. GO and KEGG analysis showed that DMGs were closely related to cellular metabolism, and most of DMGs were enriched in pathways related to energy metabolism, muscle growth and development, mainly MAPK signaling pathway, Wnt signaling pathway and CGMP-PKG signaling pathway. The DEGs were significantly enriched in actin binding, calcium ion binding, angiogenesis, and other biological processes, and most of them were enriched in PI3K-Akt and CGMP-PKG signaling pathways. Combined analysis of m6A-Seq and RNA-Seq data revealed a negative correlation between differentially methylated m6A levels and mRNA abundance, and mRNA expression of the gene with m6A peak near 3′UTR will decrease. In addition, 11 DMGs regulating cell differentiation, muscle growth and development were identified. This study displayed the m6A profiles and distribution patterns in the goat transcriptome, determined the potential role of m6A modification in muscle growth and provided a new reference for the further study of goat skeletal muscle development.