2023
DOI: 10.1109/access.2023.3325897
|View full text |Cite
|
Sign up to set email alerts
|

Global-Local Consistency Constrained Deep Embedded Clustering for Hyperspectral Band Selection

Shangfeng Ning,
Wenhong Wang

Abstract: Hyperspectral band selection plays a key role for overcoming the curse of dimensionality in the classification of hyperspectral remote sensing images (HSIs). Recently, clustering-based band selection methods have demonstrated great potential to select informative and representative bands for hyperspectral classification tasks. However, most clustering-based methods perform clustering directly on the original high-dimensional data, which reduces their performance. To address this problem, a novel band selection… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 46 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?