Agriculture serves as both a source and a sink of global greenhouse gases (GHGs), with agricultural intensification continuing to contribute to GHG emissions. Climate‐smart agriculture, encompassing both nature‐ and technology‐based actions, offers promising solutions to mitigate GHG emissions. We synthesized global data, between 1990 and 2021, from the Food and Agriculture Organization (FAO) of the United Nations to analyze the impacts of agricultural activities on global GHG emissions from agricultural land, using structural equation modeling. We then obtained predictive estimates of agricultural GHG emissions for the future period of 2022–2050 using deep‐learning models. The FAO data show that, from 1990 to 2021, global livestock numbers, inorganic nitrogen (N) fertilizer use, crop residue, and irrigation area increased by 27%, 47%, 49%, and 37%, respectively. The increased livestock numbers contributed to the increases in CH4 and N2O emissions, while inorganic N fertilizer, crop residue, and irrigation mainly contributed to the increases in N2O emissions. Emissions of CO2 decreased because of a 29% reduction in net forest loss. As a result of the reduced deforestation emissions, the overall agricultural GHG emissions declined from 11.50 to 10.89 GtCO2eq from 1990 to 2021 despite the increases in livestock numbers, inorganic N fertilizer, crop residue, and irrigation. Looking ahead, our model predicts that if current agricultural trends persist, GHG emissions will rise to 11.82 ± 0.07 GtCO2eq in 2050. However, maintaining agricultural GHG emissions at the 2021 level through 2050 is possible if the rate of reduction in net forest loss is doubled. Furthermore, if the rate is tripled, agricultural GHG emissions can be limited to 9.85 ± 0.07 GtCO2eq in 2050. Our findings suggest that reductions in agricultural GHG emissions, alongside sustainable agricultural intensification and climate‐smart agricultural practices, can be achieved through parallel efforts emphasizing accelerated forest conservation.