2024
DOI: 10.1007/s10898-024-01434-9
|View full text |Cite
|
Sign up to set email alerts
|

Global optimization: a machine learning approach

Dimitris Bertsimas,
Georgios Margaritis

Abstract: Many approaches for addressing global optimization problems typically rely on relaxations of nonlinear constraints over specific mathematical primitives. This is restricting in applications with constraints that are implicit or consist of more general primitives. Trying to address such limitations, Bertsimas and Ozturk (2023) proposed OCTHaGOn as a way of solving very general global optimization problems by approximating the nonlinear constraints using hyperplane-based decision-trees and then using those trees… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 28 publications
0
0
0
Order By: Relevance