2020
DOI: 10.1007/978-3-030-28909-6_7
|View full text |Cite
|
Sign up to set email alerts
|

Global Optimization of Near-Surface Potential Field Anomalies Through Metaheuristics

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
13
0
3

Year Published

2020
2020
2024
2024

Publication Types

Select...
8
2

Relationship

1
9

Authors

Journals

citations
Cited by 27 publications
(16 citation statements)
references
References 83 publications
0
13
0
3
Order By: Relevance
“…Literatürde sıklıkla kullanılan metasezgisel yöntemler genetik algoritma-GA [4], yapay ısıl işlem-YIİ [5], parçacık sürü optimizasyonu-PSO [6], farksal evrim-FE [7][8][9] olarak örneklendirilebilir. Jeofizikte parametre kestirim çalışmalarında yaygın olarak kullanılan algoritmalara ise GA [10][11][12], PSO [13][14][15][16][17][18][19], FE [2,3,[19][20][21][22][23][24], YIİ algoritması [25][26][27][28][29] farksal arama algoritması [30,31] örnek olarak verilebilir. Parametre kestirim çalışmalarında uygulanan güncel algoritmalara örnekler ise gri kurt optimizasyonu [32] geri-izleme arama optimizasyonu [33], guguk kuşu arama algoritması [34] olarak verilebilir.…”
Section: Introductionunclassified
“…Literatürde sıklıkla kullanılan metasezgisel yöntemler genetik algoritma-GA [4], yapay ısıl işlem-YIİ [5], parçacık sürü optimizasyonu-PSO [6], farksal evrim-FE [7][8][9] olarak örneklendirilebilir. Jeofizikte parametre kestirim çalışmalarında yaygın olarak kullanılan algoritmalara ise GA [10][11][12], PSO [13][14][15][16][17][18][19], FE [2,3,[19][20][21][22][23][24], YIİ algoritması [25][26][27][28][29] farksal arama algoritması [30,31] örnek olarak verilebilir. Parametre kestirim çalışmalarında uygulanan güncel algoritmalara örnekler ise gri kurt optimizasyonu [32] geri-izleme arama optimizasyonu [33], guguk kuşu arama algoritması [34] olarak verilebilir.…”
Section: Introductionunclassified
“…Due to its limitations in delineating an effective solution, global optimization or metaheuristic optimization is necessary for finding an optimal solution that does not need an initial guess of the model parameters and can give the best result. Global optimization such as the genetic algorithm (GA), particle swarm optimization (PSO), differential evolution (DE) algorithm, very fast simulated annealing (VFSA), genetic-price algorithm (GPO), and whale optimization algorithm (WOA) has been applied to numerous geophysical applications such as seismic data [56][57][58], self-potential data [59][60][61][62][63][64][65][66][67][68][69][70][71][72][73], and also in the interpretation of gravity and magnetic data [3,[74][75][76][77][78][79][80][81][82][83][84][85][86][87][88][89][90][91][92].…”
Section: Introductionmentioning
confidence: 99%
“…The interpretation of gravity and self-potential data falls on the main two categories as follows: the first category depends on threedimensional and two-dimensional data elucidation [8][9][10][11][12][13], the second category is depending using the simple geometric-shaped model such as spheres, cylinders, and sheets which are playing a vital role in interpreting the subsurface structures to reach the priors information that help in more investigations [14][15][16][17][18][19][20]. In addition, methods depend on the global optimization algorithms such as genetic algorithm [21][22][23][24], particle swarm [25,26], simulated annealing [27][28][29][30][31][32], flower pollination [33], memory-based hybrid dragonfly [34], differential evolution [35,36].…”
Section: Introductionmentioning
confidence: 99%