1. Symbiotic nitrogen (N)-fixing trees can provide large quantities of new N to ecosystems, but only if they are sufficiently abundant. The overall abundance and latitudinal abundance distributions of N-fixing trees are well characterised in the Americas, but less well outside the Americas.2. Here, we characterised the abundance of N-fixing trees in a network of forest plots spanning five continents, ~5,000 tree species and ~4 million trees. The majority of the plots (86%) were in America or Asia. In addition, we examined whether the observed pattern of abundance of N-fixing trees was correlated with mean annual temperature and precipitation.3. Outside the tropics, N-fixing trees were consistently rare in the forest plots we examined. Within the tropics, N-fixing trees were abundant in American but not Asian forest plots (~7% versus ~1% of basal area and stems). This disparity was not explained by mean annual temperature or precipitation. Our finding of low N-fixing tree abundance in the Asian tropics casts some doubt on recent high estimates of N fixation rates in this region, which do not account for disparities in N-fixing tree abundance between the Asian and American tropics.
Synthesis.Inputs of nitrogen to forests depend on symbiotic nitrogen fixation, which is constrained by the abundance of N-fixing trees. By analysing a large dataset of ~4 million trees, we found that N-fixing trees were consistently rare in the Asian tropics as well as across higher latitudes in Asia, America and Europe. The rarity of N-fixing trees in the Asian tropics compared with the American tropics might stem from lower intrinsic N limitation in Asian tropical forests, although direct support for any mechanism is lacking. The paucity of N-fixing trees throughout Asian forests suggests that N inputs to the Asian tropics might be lower than previously thought.
K E Y W O R D Sforest, legume, nitrogen fixation, nutrient limitation, Smithsonian ForestGEO, symbiosis Correspondence Tak Fung