In this paper, we will introduce the inviscid vortex stretching equation, which is a model equation for the 3D Euler equation where the advection of vorticity is neglected. We will show that there are smooth solutions of this equation which blowup in finite-time, even when restricting to axisymmetric, swirl-free solutions. This provides further evidence of the role of advection in depleting nonlinear vortex stretching for solutions of the 3D Euler equation.