Due to being lightweight, fine-grained sediments easily flow with water and thus amplify the destructive effect of debris flow hazards. In such hazards, water content and shear strength are key inter-controlled factors relating to the stability of fine-grained sediments and thus control the density, scale, and danger of debris flow hazards. Although the correlation between water content and sediment stability has been studied, there are still some issues to be solved: what is the changing trend of shear strength with increasing water content? What is the water content spatial distribution pattern of fine-grained sediments in debris flow? What is the role/impact of this pattern on debris flow hazards prevention? Therefore, the objective of this research is to show the spatial distribution pattern of water content and establish a correlation between the water content and the shear strength of fine-grained sediments to provide a scientific basis for debris flow hazard prevention. Taking the Beichuan debris flow for our study, with a length of 37.6 km, and a 341 km2 study area, the results show that (1) the average water content shows an increasing trend, from 9.9% in the upstream of the river (SP01–SP05) to 21.7% in the downstream of the river (SP13–SP15). (2) When unsaturated, the correlation between the water content and shear strength is determined by combining the cohesion, normal stress, and internal friction angle; when saturated, the water content is negatively correlated with shear strength. (3) Water content and shear strength are the key inter-controlled factors relating to the stability of fine-grained sediments, and the water content distribution pattern of this research indicates the key locations that require attention: locations with high water content in the downstream river or with high curvature, which is of some significance for debris flow hazard prevention.