2006
DOI: 10.1007/s00030-006-4015-y
|View full text |Cite
|
Sign up to set email alerts
|

Global stability of the Armstrong-Frederick model with periodic biaxial inputs

Abstract: The paper is concerned with the study of plasticity models described by differential equations with stop and play operators. We suggest sufficient conditions for the global stability of a unique periodic solution for the scalar models and for the vector models with biaxial inputs of a particular form, namely the sum of a uniaxial function and a constant term. For another class of simple biaxial inputs, we present an example of the existence of unstable periodic solutions.2000 Mathematics Subject Classification… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?