In this work, 11 years (2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012) of Thermosphere, Ionosphere, Mesosphere Energetics, and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) global temperature data are used to study the nonlinear interaction between stationary planetary waves (SPWs) and tides in the stratosphere and mesosphere. The holistic behavior of the nonlinear interactions between all SPWs and tides is analyzed from the point of view of energetics. The results indicate that the intensities of nonmigrating diurnal, semidiurnal, terdiurnal, and 6 h tides are strongest during winter and almost vanish during summer, synchronous with SPW activity. Temporal correlations between the SPWs and nonmigrating tides for these four tidal components are strong in the region poleward of 20°and below about 80 km. In the tropics, where the SPWs are very weak in all seasons, the correlations are small. Bispectral analysis between triads of waves and tides shows which particular interactions are likely to be responsible for the generation of the nonmigrating tides that are largest in the midlatitude stratosphere. Based on the more limited SABER observations at high latitudes, the correlations there are similar to those in midlatitudes during spring, summer, and autumn; there are no high-latitude observations by SABER in winter. These results show that nonlinear interactions between SPWs and tides in the stratosphere and the lower mesosphere may be an important source of the nonmigrating tides that then propagate into the upper mesosphere and lower thermosphere.