The cellular response of Escherichia coli exposed to alkaloids extracted from a biennial endemic plant, Papaver polychaetum, was explored using proteome analysis. Following determination of the minimum inhibitory concentration of the berberine-containing plant extract as 1,250 μg/mL, E. coli cells were grown in the presence of 750 μg/mL extract. The response of the bacteria to the extract, with berberine found as the major alkaloid, was analyzed on two-dimensional gels. The differentially expressed proteins in the presence of 750 μg/mL extract were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. These proteins included those that play vital roles for maintenance such as protein synthesis (elongation factor-Ts), transport (oligopeptide-binding protein A, uncharacterized amino-acid ABC transporter ATP binding protein YECC), energy metabolism (alpha-subunit of ATP synthase, pyridine nucleotide transhydrogenase STHA) and regulation. These results provide clues for understanding the mechanism of the alkaloid extract-induced stress and cytotoxicity on E. coli. The altered proteins can serve as potential targets for development of innovative therapeutic agents.