Delivering accurate cyclone forecasts in time is of key importance when it comes to saving human lives and reducing economic loss. Difficulties arise because the geographical and climatological characteristics of the various cyclone formation basins are not similar, which entails that a single forecasting technique cannot yield reliable performance in all ocean basins. For this reason, global forecasting techniques need to be applied together with basin-specific techniques to increase the forecast accuracy. As cyclone track is governed by a range of factors variations in weather conditions, wind pressure, sea surface temperature, air temperature, ocean currents, and the earth' rotational force-the coriolis force, it is a formidable task to combine these parameters and produce reliable and accurate forecasts. In recent years, the availability of suitable data has increased and more advanced forecasting techniques have been developed, in addition to old techniques having been modified. In particular, artificial neural network based techniques are now being considered at meteorological offices. This new technique uses freely available satellite images as input, can be run on standard PCs, and can produce forecasts with good accuracy. For these reasons, artificial neural network based techniques seem especially suited for developing countries which have limited capacity to forecast cyclones and where human casualties are the highest.