Enhanced phosphorus (P) export from land into streams and lakes is a primary factor driving the expansion of deep-water hypoxia in lakes during the Anthropocene. However, the interplay of regional scale environmental stressors and the lack of long-term instrumental data often impede analyses attempting to associate changes in land cover with downstream aquatic responses. Herein, we performed a synthesis of data that link paleolimnological reconstructions of lake bottom-water oxygenation to changes in land cover/use and climate over the past 300 years to evaluate whether the spread of hypoxia in European lakes was primarily associated with enhanced P exports from growing urbanization, intensified agriculture, or climatic change. We showed that hypoxia started spreading in European lakes around CE 1850 and was greatly accelerated after CE 1900. Socioeconomic changes in Europe beginning in CE 1850 resulted in widespread urbanization, as well as a larger and more intensively cultivated surface area. However, our analysis of temporal trends demonstrated that the onset and intensification of lacustrine hypoxia were more strongly related to the growth of urban areas than to changes in agricultural areas and the application of fertilizers. These results suggest that anthropogenically triggered hypoxia in European lakes was primarily caused by enhanced P discharges from urban point sources. To date, there have been no signs of sustained recovery of bottom-water oxygenation in lakes following the enactment of European water legislation in the 1970s to 1980s, and the subsequent decrease in domestic P consumption.Anthropocene | lake hypoxia | land cover/uses | meta-analysis | varves C hanges in land cover and land use have been identified as important drivers of phosphorus (P) transfers from terrestrial to aquatic systems, resulting in significant impacts on water resources (1-3). In post-World War II Europe, changes in land cover, land use, and P utilization caused widespread eutrophication of freshwaters (3). Elevated rates of P release from point sources to surface water bodies increased in step with population increases, with the novel use of P in domestic detergents and with enhanced connectivity of households to sewage systems that generated concentrated effluents (4). The intensification of agriculture and drastic increased use of fertilizers from industrial and manure sources resulted in elevated P concentrations in runoff from diffuse sources (4). These trends have now metastasized from Europe and North America to most nations, which explains the almost global development of eutrophication problems in surface waters (1).Much of our understanding regarding the interactions between changes in land cover/use, climate, and lake eutrophication comes from detailed studies of individual lakes (5), modeling exercises (1), and/or regional-scale syntheses of instrumental data (6, 7); these studies are largely based on relatively short time series (8). Depending on the multitudinous local differences in catchment and lake mor...