In this paper, we study the following quasilinear chemotaxis–haptotaxis system
{ut=∇·(D(u)∇u)−∇·(S1(u)∇v)−∇·(S2(u)∇w)+uf(u,w),x∈Ω,t>0,vt=Δv−v+u,x∈Ω,t>0,wt=−vw,x∈Ω,t>0
in a bounded smooth domain
normalΩ⊂double-struckRn3.0235pt(n≥1) under zero‐flux boundary conditions, where the nonlinearities D,S1, and S2 are supposed to generalize the prototypes
D(u)=CD(u+1)m−1,S1(u)=CS1u(u+1)q1−1andS2(u)=CS2u(u+1)q2−1
with
CD,CS1,CS2>0,3.0235ptm,q1,q2∈double-struckR, and f∈C1([0,+∞) × [0,+∞)) satisfies
f(u,w)≤r−bufor allu≥0andw≥0
with r > 0 and b > 0. If the nonnegative initial data u0(x)∈W1,∞(Ω),v0(x)∈W1,∞(Ω), and
w0(x)∈C2,α(truenormalΩ̄) for some α∈(0,1), it is proved that
For n = 1, if
q1