Abstract:Autocovariances are a fundamental quantity of interest in Markov chain Monte Carlo (MCMC) simulations with autocorrelation function (ACF) plots being an integral visualization tool for performance assessment. Unfortunately, for slow mixing Markov chains, the empirical autocovariance can highly underestimate the truth. For multiple-chain MCMC sampling, we propose a globally-centered estimator of the autocovariance function (G-ACvF) that exhibits significant theoretical and empirical improvements. We show that t… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.