Forests play a crucial role providing ecosystem services to humans, yet many aspects of forest dynamics remain unknown. One key area is how climate change might impact reproduction of tree species. While most studies have focused on predicting tree growth, understanding how reproduction may change will be vital to forecasting future forest communities. Of particular interest is the relationship between annual growth and reproductive output, which has often been hypothesized as a trade‐off between allocating resources to growth or to reproduction. Two proposed pathways of this trade‐off, resource accumulation, that is, storage of resources over time, and resource allocation, that is, same year allocation of resources to reproduction, have been widely explored in relation to masting events. It has also been proposed that there is no internal trade‐off between the two functions, but rather there exists one or more climate variables that are intrinsically linked to both, that is, the weather hypothesis. In this study, we use 15 years of dendrochronological data and seed rain collections from forest stands at two latitudes to determine whether one or more of these strategies are taking place in two commonly occurring tree species: red maple, Acer rubrum; and sugar maple, Acer saccharum. We found evidence of a trade‐off in both species. We also found a combination of strategies was the norm, and there appeared to be evidence to also support the weather hypothesis. However, in both species, the strategy which dictated the trade‐off switched between the northern and southern regions, indicating a degree of plasticity that could be beneficial under changing environmental conditions. By identifying the ways in which growth and reproduction are connected and how these connections vary between different populations, we can gain insights into how trees allocate resources in response to changing conditions.