Summary
Focal cortical epilepsy is currently most effectively studied in humans. However, improvement in cortical monitoring and investigational device development is limited by lack of an animal model mimicking human acute focal cortical epileptiform activity under epilepsy surgery conditions. Therefore, we assessed the swine model for translational epilepsy research. Swine were used due to their cost effectiveness, convoluted cortex, and comparative anatomy similar to humans. Focal subcortical injection of benzyl-penicillin produced clinical seizures correlating with epileptiform activity demonstrating temporal and spatial progression. Swine were evaluated under 5 different anesthesia regimens. Of the 5 regimens, conditions similar to human intraoperative anesthesia, including continuous fentanyl with low dose isoflorane, was the most effective for eliciting complex, epileptiform activity after benzyl-penicillin injection. The most complex epileptiform activity (spikes, and high frequency activity) was then repeated reliably in 9 animals, utilizing 14 swine total. There were 20.1 ± 10.8 (95% CI: 11.8–28.4) epileptiform events with greater than 3.5 hertz activity occurring per animal. Average duration of each event was 46.3 ± 15.6 (95% CI: 44.0 to 48.6) seconds, ranging from 20 to 100 seconds. In conclusion, the acute swine model of focal cortical epilepsy surgery provides an animal model mimicking human surgical conditions with a large brain, gyrated cortex, and is relatively cheap among animal models. Therefore, we feel this model provides a valuable, reliable, and novel platform for translational studies of implantable hardware for intracranial monitoring.