The hypothalamo-pituitary-adrenal axis (HPA) is responsible for stimulation of adrenal corticosteroids in response to stress. Negative feedback control by corticosteroids limits pituitary secretion of corticotropin, ACTH, and hypothalamic secretion of corticotropin-releasing hormone, CRH, and vasopressin, AVP, resulting in regulation of both basal and stress-induced ACTH secretion. The negative feedback effect of corticosteroids occurs by action of corticosteroids at mineralocorticoid receptors (MR) and/or glucocorticoid receptors (GRs) located in multiple sites in the brain and in the pituitary. The mechanisms of negative feedback vary according to the receptor type and location within the brain-hypothalmo-pituitary axis. A very rapid nongenomic action has been demonstrated for GR action on CRH neurons in the hypothalamus, and somewhat slower nongenomic effects are observed in the pituitary or other brain sites mediated by GR and/or MR. Corticosteroids also have genomic actions, including repression of the pro-opiomelanocortin (POMC) gene in the pituitary and CRH and AVP genes in the hypothalamus. The rapid effect inhibits stimulated secretion, but requires a rapidly rising corticosteroid concentration. The more delayed inhibitory effect on stimulated secretion is dependent on the intensity of the stimulus and the magnitude of the corticosteroid feedback signal, but also the neuroanatomical pathways responsible for activating the HPA. The pathways for activation of some stressors may partially bypass hypothalamic feedback sites at the CRH neuron, whereas others may not involve forebrain sites; therefore, some physiological stressors may override or bypass negative feedback, and other psychological stressors may facilitate responses to subsequent stress.