2006
DOI: 10.1016/j.elecom.2006.05.024
|View full text |Cite
|
Sign up to set email alerts
|

Glucose oxidase anode for biofuel cell based on direct electron transfer

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

7
194
0
4

Year Published

2009
2009
2011
2011

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 293 publications
(205 citation statements)
references
References 23 publications
7
194
0
4
Order By: Relevance
“…Also, under the proper conditions, enzymes can be adsorbed or bound to the nanomaterials and then imaged on the nanoparticles. 52 Micellar structures in polymeric membranes can be imaged using TEM 53 by exchanging the cations on the hydrophilic side chains of Nafion with an easily reducible precious metal such as platinum, gold, or silver. Many reducing agents, such as hydroquinone or sodium borohydride, can then be used to form metal nanoparticles within the Nafion structure.…”
Section: Materials Characterizationmentioning
confidence: 99%
“…Also, under the proper conditions, enzymes can be adsorbed or bound to the nanomaterials and then imaged on the nanoparticles. 52 Micellar structures in polymeric membranes can be imaged using TEM 53 by exchanging the cations on the hydrophilic side chains of Nafion with an easily reducible precious metal such as platinum, gold, or silver. Many reducing agents, such as hydroquinone or sodium borohydride, can then be used to form metal nanoparticles within the Nafion structure.…”
Section: Materials Characterizationmentioning
confidence: 99%
“…However, the imbedded FAD coenzyme has made it troublesome to achieve high current densities for direct electron transfer and it is not part of the traditional metabolic enzyme cascade for glucose, so it does not allow for deep oxidation of glucose. Current densities of up to 0.4 mA/cm 2 have been reported for glucose oxidase DET bioanodes [7], while current densities significantly greater than 1mA/cm 2 are common place for mediated electron transfer [17,18]. Another common problem discussed with glucose oxidase is that the enzyme is sensitive to oxygen, which needs to be considered when engineering the final fuel cell design and the applications for the biofuel cell.…”
Section: Enzyme Choicementioning
confidence: 99%
“…Glucose oxidase is a prime example of this type of enzyme and clearly the most commonly used enzyme in biofuel cells [4 -12]. Glucose oxidase-based bioanodes that oxidize glucose to gluconolactone have been developed employing both direct electron transfer (DET) [7,13] and mediated electron transfer (MET) mechanisms [11,12,14,15]. FAD is a bound co-factor (although not covalently bound) and the FAD/FADH 2 redox couple has a standard reduction potential of À 0.200 V vs. NHE [16].…”
Section: Enzyme Choicementioning
confidence: 99%
“…No mecanismo de TME uma espécie redox ativa esta presente na superfície dos eletrodos 19,20 A observação desses dois tipos de mecanismos envolve a metodologia utilizada na imobilização da enzimas e tem sido destacados como um dos fatores de extrema importância no desempenho de BCs enzimáticas 21,22 as melhores estratégias em imobilização para aplicação em bioeletrônica, como o controle de grupos funcionais em superfícies sólidas.…”
Section: Mecanismos De Transferência De Elétronsunclassified
“…Embora ainda muito discutido 18 , esses dois mecanismos são propostos quando estratégias de obtenção de BCs enzimáticas. ChemElectroChem, v.1, n.11, p. 1751ChemElectroChem, v.1, n.11, p. -1777ChemElectroChem, v.1, n.11, p. , 2014 A observação desses dois tipos de mecanismos envolve a metodologia utilizada na imobilização da enzimas e tem sido destacados como um dos fatores de extrema importância no desempenho de BCs enzimáticas 21,22 , uma vez que a otimização da comunicação entre a enzima e o eletrodo proporciona uma melhoria em algumas propriedades da BC enzimática, como uma maior densidade de corrente e voltagens de cela unitária. …”
unclassified