Adequate protein intake during development is critical to ensure optimal bone gain and to attain a higher peak bone mass later. Using a mild protein restriction model in Balb/C mice consuming 6% of their total energy intake as soy protein (LP‐SOY)—for which we observed a significantly lower femoral cortical thickness, bone volume, trabecular number, and thickness reduction—we evaluated the effects of monosodium glutamate (MSG) supplementation at different concentrations (0.5, 1, 5, 10, and 20 g/kg of diet) on bone characteristics in LP‐SOY‐fed mice. After 6 and 12 weeks, LP‐SOY‐fed mice had lower BMD and reduced body weight related to lower lean mass, which was associated with a reduced IGF‐1 level. The negative effect of the LP‐SOY diet on BMD correlated with impaired bone formation. MSG supplementation, at 5, 10, and 20 g/kg of diet, and PTH injection, used as a positive control, were able to improve BMD and to increase osteoblast activity markers (P1NP and osteocalcin), as well as glutamine plasma concentration. An analysis of bone microarchitecture found that cortical bone was less sensitive to protein restriction than trabecular bone, and that MSG ingestion was able to preserve bone quality through an increase of collagen synthesis, although it did not allow normal bone growth. Our study reinforces the view that glutamate can act as a functional amino acid for bone physiology and support clinical investigation of glutamate supplementation in adults characterized by poor bone status, notably as a result of insufficient protein intake. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.