Electrospinning has become a widely used and efficient method for manufacturing nanofibers from diverse polymers. This study introduces an advanced electrospinning technique, Xspin -a multi-functional 3D printing platform coupled with electrospinning system, integrating a customised 3D printhead, MaGIC -Multi-channeled and Guided Inner Controlling printheads. The Xspin system represents a cutting-edge fusion of electrospinning and 3D printing technologies within the realm of pharmaceutical sciences and biomaterials. This innovative platform excels in the production of novel fiber with various materials and allows for the creation of highly customized fiber structures, a capability hitherto unattainable through conventional electrospinning methodologies. By integrating the benefits of electrospinning with the precision of 3D printing, the Xspin system offers enhanced control over the scaffold morphology and drug release kinetics. Herein, we fabricated a model floating pharmaceutical dosage for the dual delivery of curcumin and ritonavir and thoroughly characterized the product. Fourier transform infrared (FTIR) spectroscopy demonstrated that curcumin chemically reacted with the polymer during the Xspin process. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) confirmed the solid-state properties of the active pharmaceutical ingredient after Xspin processing. Scanning electron microscopy (SEM) revealed the surface morphology of the Xspin-produced fibers, confirming the presence of the bifiber structure. To optimize the quality and diameter control of the electrospun fibers, a design of experiment (DoE) approach based on quality by design (QbD) principles was utilized. The bifibers expanded to approximately 10−11 times their original size after freeze-drying and effectively entrapped 87% curcumin and 84% ritonavir. In vitro release studies demonstrated that the Xspin system released 35% more ritonavir than traditional pharmaceutical pills in 2 h, with curcumin showing complete release in pH 1.2 in 5 min, simulating stomach media. Furthermore, the absorption rate of curcumin was controlled by the characteristics of the linked polymer, which enables both drugs to be absorbed at the desired time. Additionally, multivariate statistical analyses (ANOVA, pareto chart, etc.) were conducted to gain better insights and understanding of the results such as discern statistical differences among the studied groups. Overall, the Xspin system shows significant potential for manufacturing nanofiber pharmaceutical dosages with precise drug release capabilities, offering new opportunities for controlled drug delivery applications.