Copper is a critical element in both human and animal metabolic processes. Its role includes supporting connective tissue cross‐linking, as well as iron and lipid metabolism; at the same time, copper is also a toxic heavy metal that can cause harm to both the environment and human health. Glutathione (GSH) is a tripeptide composed of glutamic acid, cysteine, and glycine combined with sulfhydryl groups. Its properties include acting as an antioxidant and facilitating integrative detoxification. GSH is present in both plant and animal cells and has a fundamental role in maintaining living organisms. GSH is the most abundant thiol antioxidant in the human body. It exists in reduced and oxidized forms within cells and provides significant biochemical functions, such as regulating vitamins such as vitamins D, E, and C, and facilitating detoxification. A fluorescent probe has been developed to detect copper ions selectively, sensitively, and rapidly. This report outlines the successful work on creating a peptide probe, TGN (TPE‐Trp‐Pro‐Gly‐Cln‐His‐NH2), with specific Cu2+ detection capabilities, and a significant fluorescence recovery occurred with the addition of GSH. This indicates that the probe can detect Cu2+ and GSH concurrently. The detection limit for Cu2+ in the buffer solution was 264 nM (R2 = 0.9992), and the detection limit for GSH using the TGN‐Cu2+ complex was 919 nM (R2 = 0.9917). The probe exhibits high cell permeability and low biotoxicity that make it ideal for live cell imaging in biological conditions. This peptide probe has the capability to detect Cu2+ and GSH in biological cells.