Busulfan is a bifunctional alkylating agent that is widely used before hematopoietic stem cell transplantation (HSCT), in combination with other chemotherapeutic drugs. As of 2020, there is no population pharmacokinetic (popPK) model for busulfan in Chinese pediatric patients. A systemic external evaluation of 11 published popPK models was conducted in Chinese pediatric patients undergoing HSCT. Forty pediatric patients were enrolled in this study, with a total of 183 blood concentrations. The relative prediction error (PE%), median PE%, median absolute PE%, and percentage of PE% within ±20% and ±30% were calculated in prediction-based diagnostics. Simulation-based diagnostics were conducted through a predictionand variability-corrected visual predictive check and the normalized prediction distribution error. The relative individual prediction error was calculated using Bayesian forecasting with 1 to 3 concentration points. The 1-compartment open linear popPK model, which was built by Su-jin Rhee et al (model H), incorporating the patient's body surface area, age, dosing day, and aspartate aminotransferase as significant covariates had preferable predictability than other popPK models. In prediction-based diagnostics, the median PE%, percentage of PE% within ±20%, and percentage of PE% within ±30% of model H were 8.48%, 45.35%, and 59.56%, respectively. The normalized prediction distribution error of model H showed that it followed the normal distribution. Based on Bayesian forecasting, model H showed good predictive performance. Thus, model H was the most appropriate model that can be used clinically for individualized dosage adjustments in Chinese pediatric HSCT patients.