The skin represents an important barrier for pathogens and is known to produce fatty acids that are toxic toward Gram-positive bacteria. A screen of fatty acids as growth inhibitors of Staphylococcus aureus revealed structure-specific antibacterial activity. Fatty acids like oleate (18:1⌬9) were nontoxic, whereas palmitoleate (16:1⌬9) was a potent growth inhibitor. Cells treated with 16:1⌬9 exhibited rapid membrane depolarization, the disruption of all major branches of macromolecular synthesis, and the release of solutes and low-molecular-weight proteins into the medium. Other cytotoxic lipids, such as glycerol ethers, sphingosine, and acyl-amines blocked growth by the same mechanisms. Nontoxic 18:1⌬9 was used for phospholipid synthesis, whereas toxic 16:1⌬9 was not and required elongation to 18:1⌬11 prior to incorporation. However, blocking fatty acid metabolism using inhibitors to prevent acyl-acyl carrier protein formation or glycerol-phosphate acyltransferase activity did not increase the toxicity of 18:1⌬9, indicating that inefficient metabolism did not play a determinant role in fatty acid toxicity. Nontoxic 18:1⌬9 was as toxic as 16:1⌬9 in a strain lacking wall teichoic acids and led to growth arrest and enhanced release of intracellular contents. Thus, wall teichoic acids contribute to the structure-specific antimicrobial effects of unsaturated fatty acids. The ability of poorly metabolized 16:1 isomers to penetrate the cell wall defenses is a weakness that has been exploited by the innate immune system to combat S. aureus.
Staphylococcus aureus is a common cutaneous pathogen responsible for serious infections that are becoming increasingly dangerous due to the prevalence of antibiotic-resistant organisms (8). Lipids have an important role in innate immunity. Human skin deploys a variety of innate defenses against S. aureus colonization that include antimicrobial peptides and fatty acids (9,18,47,49,51). In mice, 16:1⌬9 is the most potent antibacterial fatty acid, whereas humans synthesize a different isomer, 16:1⌬6 (49). It has been known for decades that these skin fatty acids block the growth of S. aureus (21,27,44). Humans (49) and mice (18) deficient in the production of these 16-carbon monounsaturated fatty acids are more susceptible to S. aureus skin infections. However, it is much less clear how these specific fatty acids produce their antibacterial effect. Ideas include the destabilization of the bacterial membrane due to their surfactant properties (19), uncoupling of ATP synthesis (17), the formation of fatty acid hydroperoxides that elicit oxidative stress (29), increased membrane fluidity due to the incorporation in unsaturated fatty acids in phospholipid (5, 7), and the inhibition of de novo fatty acid synthesis at the FabI step (44, 54). These toxic properties of fatty acids stand in contrast to the observations that S. aureus readily incorporates exogenous fatty acids into membrane phospholipids (1, 3, 4, 41) and that acetyl-coenzyme A (CoA) carboxylase knockout mutants can be isolated a...