Theil entropy is a statistical measure used in economics to quantify income inequalities. However, it can be applied to any data distribution including biological signals. In this work, we applied different spectral methods on heart rate variability signals and cellular calcium oscillations previously to Theil entropy analysis. The behavior of Theil entropy and its decomposable property was investigated using exponents in the range of [−1, 2], on the spectrum of synthetic and physiological signals. Our results suggest that the best spectral decomposition method to analyze the spectral inequality of physiological oscillations is the Lomb–Scargle method, followed by Theil entropy analysis. Moreover, our results showed that the exponents that provide more information to describe the spectral inequality in the tested signals were zero, one, and two. It was also observed that the intra-band component is the one that contributes the most to total inequality for the studied oscillations. More in detail, we found that in the state of mental stress, the inequality determined by the Theil entropy analysis of heart rate increases with respect to the resting state. Likewise, the same analytical approach shows that cellular calcium oscillations present on developing interneurons display greater inequality distribution when inhibition of a neurotransmitter system is in place. In conclusion, we propose that Theil entropy is useful for analyzing spectral inequality and to explore its origin in physiological signals.