Glyoxal oxidase-mediated detoxification of reactive carbonyl species contributes to virulence, stress tolerance, and development in a pathogenic fungus
Xiaoyu Liu,
Nemat O. Keyhani,
Hong Liu
et al.
Abstract:Reactive carbonyl and oxygen species (RCS/ROS), often generated as metabolic byproducts, particularly under conditions of pathology, can cause direct damage to proteins, lipids, and nucleic acids. Glyoxal oxidases (Gloxs) oxidize aldehydes to carboxylic acids, generating hydrogen peroxide (H2O2). Although best characterized for their roles in lignin degradation, Glox in plant fungal pathogens are known to contribute to virulence, however, the mechanism underlying such effects are unclear. Here, we show that Gl… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.