2022
DOI: 10.3389/fgene.2022.912614
|View full text |Cite
|
Sign up to set email alerts
|

Gm-PLoc: A Subcellular Localization Model of Multi-Label Protein Based on GAN and DeepFM

Abstract: Identifying the subcellular localization of a given protein is an essential part of biological and medical research, since the protein must be localized in the correct organelle to ensure physiological function. Conventional biological experiments for protein subcellular localization have some limitations, such as high cost and low efficiency, thus massive computational methods are proposed to solve these problems. However, some of these methods need to be improved further for protein subcellular localization … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 48 publications
0
1
0
Order By: Relevance
“…Cong et al [54] proposed a self-evolving deep convolutional neural network (DCNN) protocol to solve the difficulties in feature correlation between sites and avoid the impact of unknown data distribution while using the self-attention mechanism [55] and a customized loss function to ensure the model performance. In addition, a long short-term memory network (LSTM) which combines the previous states and current inputs is also commonly used [56,57], with Generative Adversarial Network (GAN) [58] and Synthetic Minority Over-sampling Technique (SMOTE) [59] used for synthesizing minority samples to deal with data imbalance. Developing data augmentation methods by deep learning algorithms has also made protein language model construction possible [60,61].…”
Section: Sequences-based Ai Approachesmentioning
confidence: 99%
“…Cong et al [54] proposed a self-evolving deep convolutional neural network (DCNN) protocol to solve the difficulties in feature correlation between sites and avoid the impact of unknown data distribution while using the self-attention mechanism [55] and a customized loss function to ensure the model performance. In addition, a long short-term memory network (LSTM) which combines the previous states and current inputs is also commonly used [56,57], with Generative Adversarial Network (GAN) [58] and Synthetic Minority Over-sampling Technique (SMOTE) [59] used for synthesizing minority samples to deal with data imbalance. Developing data augmentation methods by deep learning algorithms has also made protein language model construction possible [60,61].…”
Section: Sequences-based Ai Approachesmentioning
confidence: 99%