2022
DOI: 10.1007/s10489-022-04253-1
|View full text |Cite
|
Sign up to set email alerts
|

Goal selection and feedback for solving math word problems

Abstract: Solving Math Word Problems (MWPs) automatically is a challenging task for AI-tutoring in online education. Most of the existing State-Of-The-Art (SOTA) neural models for solving MWPs use Goal-driven Tree-structured Solver (GTS) as their decoders. However, owing to the defects of the tree-structured recurrent neural networks, GTS can not obtain the information of all generated nodes in each decoding time step. Therefore, the performance for long math expressions is not satisfactory enough. To address such limit… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 36 publications
0
0
0
Order By: Relevance