By means of ab initio calculations we show that morphology of 111 -oriented silicon and germanium nanowires is defined by {112} and {011} facets. Changes in nanowire morphology are predicted to involve a partial transformation of {011} facets in favor of {112} facets even though the latter ones act as edges between adjacent {011} facets. Our estimates of surface energies clearly indicate a (112) surface to be thermodynamically preferable with respect to a (011) surface for both silicon and germanium. These findings can explain experimental observations of {112} facets in round-like and triangle-like morphologies of 111 -oriented silicon nanowires.Keywords: Nanowire; Morphology; Stability
BackgroundNowadays silicon and germanium nanowires (SiNWs and GeNWs) are considered to be promising and, at the same time, accessible building blocks for various applications at nanoscale [1]. In fact, SiNWs and GeNWs having mostly 011 , 111 and 112 orientations can easily be grown by different methods involving the vapor-liquidsolid growth mechanism [1][2][3]. Experimental data also indicate a clear faceting nature of morphology of these nanostructures [3,4] while theoretical calculations of the total energy of SiNWs show morphology, which is characterized by various facets, to be one of the key parameters to define the growth orientation especially at small diameters of the NWs when the surface energy is comparable to or dominates over the volume energy [5].It is also widely accepted that the Wulff construction can predict morphology of a NW on the basis of precise information on surface energies of different surfaces. In the case of silicon the most thermodynamically stable surfaces according to experimental observations are (111), (001), (113) and (011) [6], that is also supported by results of ab initio calculations [7,8]. For germanium one can expect the same issue because of the same nature of chemical bonding in silicon and germanium and of comparable differences in surface energies for various surfaces