Gold catalysts capable of promoting reactions at low-level loadings under mild conditions are the exception rather than the norm. We examined reactions where the regeneration of cationic gold catalyst (e.g., protodeauration) was the turnover limiting stage. By manipulating electron density on the substituents around phosphorus and introducing steric handles we designed a phosphine ligand that contains two electron-rich ortho-biphenyl groups and a cyclohexyl substituent. This ligand formed a gold complex that catalyzed common types of gold-catalyzed reactions including intra- and intermolecular XH (X=C, N, O) additions to alkynes and cycloisomerizations, with high turnover numbers at room temperature or slightly elevated temperatures (≤50 °C). Our new ligand can be prepared in one step from commercially available starting materials.