Gold nanoparticles have many applications in the biomedical field, mainly for drug delivery, cancer therapy, and detection of pathogenic microorganisms. In this study, gold nanoparticles synthesized using Platycodon grandiflorum (Balloon flower plant) extracts were evaluated for their antibacterial potential. Gold nanoparticles were synthesized at 20–50°C using different volumes of the leaf extract. Biosynthesis of gold nanoparticles was confirmed by ultraviolet–visible spectral absorption at 545 nm by surface plasmon resonance. The morphology and size of the P. grandiflorum gold nanoparticles were further characterized as spherical in shape with an average size of 15 nm in diameter by scanning electron microscopy and transmission electron microscopy. Energy-dispersive X-ray analysis clearly displayed the presence of gold particles. The structural analysis results with face central cubic crystalline nature and elemental composition, including gold, were confirmed by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. In addition, Fourier transform infrared results identified the functional group in P. grandiflorum that is involved in the reduction of metal ions to gold nanoparticles. The synthesized P. grandiflorum gold nanoparticles exhibited efficient antibacterial activity against Escherichia coli (16 mm) and Bacillus subtilis (11 mm). This report confirms the synthesis of gold nanoparticle from balloon flower plant extracts, which can be used as a reducing and stabilizing agent and demonstrates its antibacterial applications.