Halloysite nanotubes (HNTs) have emerged as a highly regarded choice in biomedical research due to their exceptional attributes, including superior loading capacity, customizable surface characteristics, and excellent biocompatibility. HNTs feature tubular structures comprising alumina and silica layers, endowing them with a large surface area and versatile surface chemistries that facilitate selective modifications. Moreover, their substantial pore volume and wide range of pore sizes enable efficient entrapment of diverse functional molecules. This comprehensive review highlights the broad biomedical application spectrum of HNTs, shedding light on their potential as innovative and effective therapeutic agents across various diseases. It emphasizes the necessity of optimizing drug delivery techniques, developing targeted delivery systems, rigorously evaluating biocompatibility and safety through preclinical and clinical investigations, exploring combination therapies, and advancing scientific understanding. With further advancements, HNTs hold the promise to revolutionize the pharmaceutical industry, opening new avenues for the development of transformative treatments.