Blood–brain barrier (BBB) impairment after intracerebral hemorrhage (ICH) can lead to secondary brain injury and aggravate neurological deficits. Currently, there are no effective methods for its prevention or treatment partly because of to our lack of understanding of the mechanism of ICH injury to the BBB. Here, we explored the role of Golgi apparatus protein GM130 in the BBB and neurological function after ICH. The levels of the tight junction-associated proteins ZO-1 and occludin decreased, whereas those of LC3-II, an autophagosome marker, increased in hemin-treated Bend.3 cells (p < 0.05). Additionally, GM130 overexpression increased ZO-1 and occludin levels, while decreasing LC3-II levels (p < 0.05). GM130 silencing reversed these effects and mimicked the effect of hemin treatment (p < 0.05). Moreover, tight junctions were disrupted after hemin treatment or GM130 silencing and repaired by GM130 overexpression. GM130 silencing in Bend.3 cells increased autophagic flux, whereas GM130 overexpression downregulated this activity. Furthermore, GM130 silencing-induced tight junction disruption was partially restored by 3-methyladenine (an autophagy inhibitor) administration. Similarly, an in vivo ICH rat model showed elevated perihematomal ZO-1 and occludin expression and decreased LC3-II expression (p < 0.05); these results were reversed following GM130 silencing (p < 0.05). Perihematomal Evans Blue staining and brain water content were elevated in GM130-silenced ICH rats relative to control ICH rats. GM130 overexpression can protect BBB integrity from brain injury, inhibit excessive autophagy flux in ICH, and improve neurobehavioral prognosis. Therefore, therapy targeting GM130 regulation might represent a potential treatment for acute brain injury after ICH.