Despite lentiviral system's predominance, its ultimate potential for gene therapy has not been fully exploited. Currently, most lentivirus vectors are non-inducible expression system or single-gene-induced system, which limits the extensive application in gene therapy. In this study, we designed a novel lentiviral vector containing HSP70 promoter and TRE promoter. Compared to traditional lentiviral vectors and inducible vectors, our controllable system has many advantages. Firstly, it contains multiple gene or shRNA targets. Secondly, genes expression is on/off in response to heat shock and DOX induction in time of need respectively with high effectivity and sensitivity. Thirdly, TRE promoter and HSP70 promoter can work with no interference from each other in the same inducible lentiviral vector. In addition, our study also shows that our novel vector has a higher downstream gene expression efficiency than co-transfection method and can co-position multi-genes in single cell effectively. Finally, we propose four derived models based on our vector at the end, which may be useful in biological research and clinical research in the future. Therefore, we believe that this novel lentiviral system could be promising in gene therapy for tumor.