Insectivorous bats in temperate zones have evolved strategies such as migration or hibernation to overcome challenges of reduced resource availability and increased energy demand during winter. In the southeastern United States Coastal Plain, bats are either year‐round residents and remain active during winter or are migrants from colder areas seeking milder temperatures. Southeastern Coastal Plain forests also may represent important areas for remnant populations of species impacted by white‐nose syndrome. Working pine (Pinus spp.) forests comprise a large proportion of southeastern Coastal Plain forests, yet winter bat habitat associations and how forest management affects bat use remain understudied. Hence, we used hierarchical multispecies spatial occupancy models to evaluate factors influencing winter bat occupancy and foraging habitat associations in working forests of the southeastern Coastal Plain. From January to March 2020–2022, we deployed Anabat Swift acoustic detectors and measured site‐ and landscape‐level covariates on six working landscapes. We detected five species of bats and three species groups at 93% (224/240) of sites. We observed higher species richness at sites with high proportions of contiguous forest and low levels of basal area. At the species level, occupancy patterns were influenced by site and landscape covariates, which had varying effects on species with distinct foraging strategies. Temperature was an important predictor of detectability. Our findings offer new insights into the ecology of bats in working forest landscapes during winter, where we highlight positive responses in occupancy with contiguous forests and lower levels of basal area, as in previous summer work. By providing valuable information on winter community composition and foraging habitat associations, we hope to guide management decisions for forest attributes important to these species, thus increasing conservation opportunities within working forests.