olyploidy or whole-genome duplication provides genomic opportunities for evolutionary innovations in many animal groups and all flowering plants 1-5 , including most important crops such as wheat, cotton and canola or oilseed rape 6-8. The common occurrence of polyploidy may suggest its advantage and potential for selection and adaptation 2,3,9 , through rapid genetic and genomic changes as observed in newly formed Brassica napus 10 , Tragopogon miscellus 11 and polyploid wheat 12 , and/or largely epigenetic modifications as in Arabidopsis and cotton polyploids 5,13. Cotton is a powerful model for revealing genomic insights into polyploidy 3 , providing a phylogenetically defined framework of polyploidization (~1.5 million years ago (Ma)) 14 , followed by natural diversification and crop domestication 15. The evolutionary history of the polyploid cotton clade is longer than that of some other allopolyploids, such as hexaploid wheat (~8,000 years) 12 , tetraploid canola (~7,500 years) 16 and tetraploid Tragopogon (~150 years) 11. Polyploidization between an A-genome African species (Gossypium arboreum (Ga)-like) and a D-genome American species (G. raimondii (Gr)-like) in the New World created a new allotetraploid or amphidiploid (AD-genome) cotton clade (Fig. 1a) 14 , which has diversified into five polyploid lineages, G. hirsutum (Gh) (AD) 1 , G. barbadense (Gb) (AD) 2 , G. tomentosum (Gt) (AD) 3 , G. mustelinum (Gm) (AD) 4 and G. darwinii (Gd) (AD) 5. G. ekmanianum and G. stephensii are recently characterized and closely related to Gh 17. Gh and Gb were separately domesticated from perennial shrubs to become annualized Upland and Pima cottons 15. To date, global cotton production provides income for ~100 million families across ~150 countries, with an annual economic impact of ~US$500 billion worldwide 6. However, cotton supply is reduced due to aridification, climate change and pest emergence. Future improvements in cotton and sustainability will involve use of the genomic resources and gene-editing tools becoming available in many crops 9,18,19. Cotton genomes have been sequenced for the D-genome (Gr) 20 and A-genome (Ga) 21 diploids and two cultivated tetraploids 22-26. These analyses have shown structural, genetic and gene expression variation related to fiber traits and stress responses in cultivated