ÖzCovid-19 gibi solunum yolu enfeksiyonlarının erken tespiti, hastalığın daha kolay tedavisine ve hastanın daha rahat bir süre geçirmesine yol açarak ciddi komplikasyon olasılığını azaltabilir. Öksürme ve hapşırma gibi solunum seslerinin sıklığı, şiddeti ve türü (kuru veya balgamlı), hastalığın teşhisi, tedavisi ve davranışlarının tespitinde tıp uzmanları için çıkarılabilen zengin bilgiler taşımaktadır. Bunun için, makine veya derin öğrenimine dayalı otomatik yaklaşımların geliştirilmesi oldukça önemlidir. Center for Open Science (OSFHOME), 2020 yılında güncellediği veri küme üzerine, bu alanda çalışan araştırmacıları, ses kayıtlarını kullanarak hastalık seslerinin otomatik algılanması için makine öğrenimi modelleri oluşturmaya davet etti. Veri seti, "Pfizer Digital Medicine Challenge" için oluşturulmuştur ve amacı öksürme ve hapşırma gibi seslerinin tespiti için makine öğrenimi modellerinin geliştirilmesidir. Veri seti üç parçaya ayrılmıştır; eğitim, doğrulama ve test kümeleri. Sunulan çalışmada, bu veri seti üzerine yeni bir makine öğrenimi sistemi önerildi. Eğitim, doğrulama ve test örneklerinden öznitelikler elde edildikten sonra, dört farklı sınıflandırıcının parametrelerini hesaplamak için doğrulama veri kümesi kullanıldı ve son aşamada test veri kümesi üzerine sınıflandırma gerçekleştirildi. Elde edilen sonuçlara göre, radyal tabanlı çekirdek fonksiyonlu destek vektör makine (DVM) sınıflandırıcısı solunum seslerini diğer seslere karşı, %76 civarında bir doğruluk oranıyla diğer sınıflandırıcılara göre daha başarılı sınıflandırdı.