GPU-accelerated lung CT segmentation based on level sets and texture analysis
Daniel Reska,
Marek Kretowski
Abstract:This paper presents a novel semi-automatic method for lung segmentation in thoracic CT datasets. The fully three-dimensional algorithm is based on a level set representation of an active surface and integrates texture features to improve its robustness. The method’s performance is enhanced by the graphics processing unit (GPU) acceleration. The segmentation process starts with a manual initialisation of 2D contours on a few representative slices of the analysed volume. Next, the starting regions for the active… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.