2021
DOI: 10.4018/ijamc.2021040101
|View full text |Cite
|
Sign up to set email alerts
|

GPU-Based Hybrid Cellular Genetic Algorithm for Job-Shop Scheduling Problem

Abstract: In task scheduling, the job-shop scheduling problem is notorious for being a combinatorial optimization problem; it is considered among the largest class of NP-hard problems. In this paper, a parallel implementation of hybrid cellular genetic algorithm is proposed in order to reach the best solutions at a minimum execution time. To avoid additional computation time and for real-time control, the fitness evaluation and genetic operations are entirely executed on a graphic processing unit in parallel; moreover, … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2021
2021
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 26 publications
0
2
0
Order By: Relevance
“…e genetic crossover and variation operators themselves are adaptive, and the individuals in the population evolve iteratively through the genetic operations, with changes in their crossover and variation rate values determined by the degree of population dispersion or concentration, as well as the size of the population [2]. e amount of population size increases as the crossover rate value becomes larger, but it also leads to an increase in the chance that the more outstanding individuals in the population are destroyed; the size of the variation rate value directly affects the number of newborn populations in the population, and the larger the value of the variation probability, the larger the value of the size of the newborn population, and the greater the possibility of the algorithm jumping out of local convergence to obtain the optimal solution [3].…”
Section: Introductionmentioning
confidence: 99%
“…e genetic crossover and variation operators themselves are adaptive, and the individuals in the population evolve iteratively through the genetic operations, with changes in their crossover and variation rate values determined by the degree of population dispersion or concentration, as well as the size of the population [2]. e amount of population size increases as the crossover rate value becomes larger, but it also leads to an increase in the chance that the more outstanding individuals in the population are destroyed; the size of the variation rate value directly affects the number of newborn populations in the population, and the larger the value of the variation probability, the larger the value of the size of the newborn population, and the greater the possibility of the algorithm jumping out of local convergence to obtain the optimal solution [3].…”
Section: Introductionmentioning
confidence: 99%
“…e construction of garbage compression facilities improves the efficiency of garbage transportation, garbage transportation generally uses large vehicles, and the starting point of garbage transportation cannot be too scattered [16]. Moreover, garbage should have compressed before transportation to reduce the volume of garbage and save transportation costs.…”
Section: Mathematical Model Of Urban Garbage Transportationmentioning
confidence: 99%