Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Predicting urban crowd flow spatial distributions plays a critical role in optimizing urban public safety and traffic congestion management. The spatial dependency between regions and the temporal dynamics of the local crowd flow are two important features in urban crowd flow prediction. However, few studies considered geographic characteristic in terms of spatial features. To fill this gap, we propose an urban crowd flow prediction model integrating geographic characteristics (FPM-geo). First, three geographic characteristics, proximity, functional similarity, and road network connectivity, are fused by a residual multigraph convolution network to model the spatial dependency relationship. Then, a long short-term memory network is applied as a framework to integrate both the temporal dynamic patterns of local crowd flow and the spatial dependency between regions. A 4-day mobile phone dataset validates the effectiveness of the proposed method by comparing it with several widely used approaches. The result shows that the root mean square error decreases by 15.37% compared with those of the typical models with the prediction interval at the 15-min level. The prediction error increases with the crowd flow size in a local area. Moreover, the error reaches the top of the morning peak and the evening peak and slopes down to the bottom at night.
Predicting urban crowd flow spatial distributions plays a critical role in optimizing urban public safety and traffic congestion management. The spatial dependency between regions and the temporal dynamics of the local crowd flow are two important features in urban crowd flow prediction. However, few studies considered geographic characteristic in terms of spatial features. To fill this gap, we propose an urban crowd flow prediction model integrating geographic characteristics (FPM-geo). First, three geographic characteristics, proximity, functional similarity, and road network connectivity, are fused by a residual multigraph convolution network to model the spatial dependency relationship. Then, a long short-term memory network is applied as a framework to integrate both the temporal dynamic patterns of local crowd flow and the spatial dependency between regions. A 4-day mobile phone dataset validates the effectiveness of the proposed method by comparing it with several widely used approaches. The result shows that the root mean square error decreases by 15.37% compared with those of the typical models with the prediction interval at the 15-min level. The prediction error increases with the crowd flow size in a local area. Moreover, the error reaches the top of the morning peak and the evening peak and slopes down to the bottom at night.
Similarity search, the task of identifying objects most similar to a given query object under a specific metric, has gathered significant attention due to its practical applications. However, the absence of coordinate information to accelerate similarity search and the high computational cost of measuring object similarity hinder the efficiency of existing CPU-based methods. Additionally, these methods struggle to meet the demand for high throughput data management. To address these challenges, we propose GTS, a GPU-based tree index designed for the parallel processing of similarity search in general metric spaces, where only the distance metric for measuring object similarity is known. The GTS index utilizes a pivot-based tree structure to efficiently prune objects and employs list tables to facilitate GPU computing. To efficiently manage concurrent similarity queries with limited GPU memory, we have developed a two-stage search method that combines batch processing and sequential strategies to optimize memory usage. The paper also introduces an effective update strategy for the proposed GPU-based index, encompassing streaming data updates and batch data updates. Additionally, we present a cost model to evaluate search performance. Extensive experiments on five real-life datasets demonstrate that GTS achieves efficiency gains of up to two orders of magnitude over existing CPU baselines and up to 20x efficiency improvements compared to state-of-the-art GPU-based methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.