Grad–Shafranov equilibria via data-free physics informed neural networks
Byoungchan Jang,
Alan A. Kaptanoglu,
Rahul Gaur
et al.
Abstract:A large number of magnetohydrodynamic (MHD) equilibrium calculations are often required for uncertainty quantification, optimization, and real-time diagnostic information, making MHD equilibrium codes vital to the field of plasma physics. In this paper, we explore a method for solving the Grad–Shafranov equation by using physics-informed neural networks (PINNs). For PINNs, we optimize neural networks by directly minimizing the residual of the partial differential equation as a loss function. We show that PINNs… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.