Let A be a finite-dimensional, self-injective algebra, graded in nonpositive degree. We define A -dgstab, the differential graded stable category of A, to be the quotient of the bounded derived category of dg-modules by the thick subcategory of perfect dg-modules. We express A -dgstab as the triangulated hull of the orbit category A -grstab /Ω(1). This result allows computations in the dg-stable category to be performed by reducing to the graded stable category. We provide a sufficient condition for the orbit category to be equivalent to A -dgstab and show this condition is satisfied by Nakayama algebras and Brauer tree algebras. We also provide a detailed description of the dg-stable category of the Brauer tree algebra corresponding to the star with n edges.