2010
DOI: 10.1016/j.jpaa.2009.11.013
|View full text |Cite
|
Sign up to set email alerts
|

Graded Brauer tree algebras

Abstract: a b s t r a c tIn this paper we construct non-negative gradings on a basic Brauer tree algebra A Γ corresponding to an arbitrary Brauer tree Γ of type (m, e). We do this by transferring gradings via derived equivalence from a basic Brauer tree algebra A S , whose tree is a star with the exceptional vertex in the middle, to A Γ . The grading on A S comes from the tight grading given by the radical filtration. To transfer gradings via derived equivalence we use tilting complexes constructed by taking Green's wal… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
9
0
2

Year Published

2011
2011
2022
2022

Publication Types

Select...
6
2

Relationship

2
6

Authors

Journals

citations
Cited by 8 publications
(11 citation statements)
references
References 15 publications
0
9
0
2
Order By: Relevance
“…In more detail, the projective indecomposables are uniserial, and the radical filtration is isomorphic to its associated graded. Some readers may find it helpful to refer to the paper Bogdanic [12] which recalls details of Brauer tree algebras and shows that the stable grading comes from a grading of the Brauer tree algebras themselves.…”
Section: Brauer Trees and Hecke Algebrasmentioning
confidence: 99%
“…In more detail, the projective indecomposables are uniserial, and the radical filtration is isomorphic to its associated graded. Some readers may find it helpful to refer to the paper Bogdanic [12] which recalls details of Brauer tree algebras and shows that the stable grading comes from a grading of the Brauer tree algebras themselves.…”
Section: Brauer Trees and Hecke Algebrasmentioning
confidence: 99%
“…Theorem 5.1. (Bogdanic, [2], Theorem 4.3 and Lemma 4.9) Let S be the star with n vertices and multiplicity m. Let A S be graded so that soc(A S ) is in degree nm. Let Γ be any Brauer tree with n vertices and multiplicity m. Then A Γ admits a non-negative grading such that soc(A Γ ) is in degree nm, and there is an equivalence D b (A S -grmod) → D b (A Γ -grmod).…”
Section: Brauer Tree Algebrasmentioning
confidence: 99%
“…Une algèbre de Brauer associéeà une ligne avec multiplicité 1 est isomorphè a une extension triviale de l'algèbre d'un carquois de type A où aucun sommet n'est la source (resp. le but) de deux flèches distinctes [Bog,Proposition 8.1]. Le théorème 6.18 montre alors qu'une telle algèbre de Brauer (et donc toute algèbre de Brauerà multiplicité triviale) satisfait la propriété de relèvement.…”
Section: Supposons Maintenantunclassified
“…Pour chaque i, on fixe V i un sous-kE-module de J(kP i ) tel que J(kP Le cas des blocsà défaut cyclique aétéétudié en détail par Bogdanic [3]. La conjecture de Broué [4] sur les blocsà défaut abélien prédit que les conclusions du théorème 6.10 sont vraies si D est abélien (la conjecture prédit plus précisément que les blocs seront dérivé-équivalents).…”
Section: Blocs Locauxunclassified