Oxidative stress and Ca++ toxicity are mechanisms of hypoxic-ischemic (HI) brain injury. This work investigates if partial inhibition of mitochondrial respiratory chain protects HI-brain by limiting generation of oxidative radicals during reperfusion. HI-insult was produced in p10 mice treated with complex-I (C-I) inhibitor, pyridaben (P), or vehicle. Administration of P significantly decreased extent of HI injury. Mitochondria isolated from the ischemic hemisphere in P-treated animals showed reduced H2O2 emission, less oxidative damage to the mitochondrial matrix, and increased tolerance to Ca++ triggered opening of permeability transition pore. Protective effect of P administration was also observed when the reperfusion-driven oxidative stress was augmented by the exposure to 100% O2 which exacerbated brain injury only in V-treated mice. In vitro, intact brain mitochondria dramatically increased H2O2 emission in response to hyperoxia, resulting in substantial loss of Ca++ buffering capacity. However, in the presence of C-I inhibitor, rotenone, or antioxidant, catalase, these effects of hyperoxia were abolished.
Our data suggest that the reperfusion-driven recovery of C-I dependent mitochondrial respiration contributes not only to the cellular survival, but also causes an oxidative damage to the mitochondria, potentiating a loss of Ca++ buffering capacity. This highlights a novel neuroprotective strategy against HI-brain injury where the major therapeutic principle is a pharmacological attenuation, rather than an enhancement of mitochondrial oxidative metabolism during early reperfusion.