The Constraint Based Decomposition (CBD) is a constructive neural network technique that builds a three or four layer neural network and is guaranteed to find a solution for any classification problem. CBD is shown to be able to solve complicated problems in a simple, fast and reliable manner. The technique is further enhanced by two modifications (locking detection and redundancy elimination) which address the training speed and the efficiency of the internal representation built by the network. The redundancy elimination aims at building more compact architectures while the locking detection aims at improving the training speed. The computational cost of the redundancy elimination is negligible and this enhancement can be used for any problem. However, the computational cost of the locking detection is exponential in the number of dimensions and should only be used in low dimensional spaces. The experimental results show the performance of the algorithm presented in a series of classical benchmark problems including the 2-spiral problem and the Iris, Wine, Glass, Lenses, Ionosphere, Lung cancer, Pima indians, Bupa, Tic-Tac-Toe, Balance and Zoo data sets from the CMU machine learning repository. CBD's generalization accuracy is compared with that of C4.5, C4.5 with rules, incremental decision trees, oblique classifiers, linear machine decision trees, CN2, learning vector quantization (LVQ), backpropagation, nearest neighbor, Q* and radial basis functions (RBFs). CBD provides the second best average accuracy on the problems tested as well as the best reliability (the lowest standard deviation).